Quantifying Uncertainty
Robustness to Flaws, Geometric and Material Variability

Critical Exceedance Probabilities
Probability of crack tip force exceeding G, or G,,. at 90 Ib/in.

G, [in-Ibs/in?]

G, [in-Ibs/in?]

Variability Mean Weibull Normal Mean Weibull Normal
B-Value B-Value B-Value B-Value
Geometry 0 >1/3 1/ 14,000 0 0 0
Geometry + 0 1/2 1/36 0 0 0
Material

* MIL-HDBK-17 statistical procedures used.

Large variations in coupon measured fracture strengths
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will complicate test prediction.
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Quantifying Uncertainty
Robustness to Flaws, Geometric and Material Variability
Load Exceedance Probability

For continuous distributions,
Probabilty the probability of failure Is:

0

pf = J. FG,SLbIam(Gmax )fGemer(G}mx )dGc

0

FG,SUBLAM IS the CDF of
expected SERRs for the HSP
Gl system

foexper 1S the PDF of the
experimental data.

~n=
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DARPA
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Quantifying Uncertainty
Robustness to Flaws, Geometric and Material Variability

Comparison to Distributions of G, and G, (Left) and Pull-off Load (Right)

Pull off load = 80 Ib/in

Probability Probability
1 1 —
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
e GLGI I -
02 04 06 08 1 12 14 90 100 110 120 P_tal
Interaction Criteria 1 Interaction Criteria 2
2 2 G
G, —L 4+~ _R?
—L | +| =1 | =R1 c TG
G, G, c IC le
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Quantifying Uncertainty
Robustness to Flaws, Geometric and Material Variability

Pull-off Faillure Load Statistics

Criteria 1 Criteria 2

Mean (lbs/in) 110 100
Standard Deviation 5.82 4.90

n==6 _(current number of 775 296
B-Values experimental data)
(Ibs/in) n=10 (t_yplcal number 80.5 75 1

of experimental data )

' n =500

Weibull 1 =55 99.8 91.6
Distribution | (simulation results)

B-value Prediction Strongly Depends on Confidence in Input Data
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===t Data from Knowledge, Analysis, and Test
Using previous knowledge

o Test, analysis, and fabrication/service experience of similar
materials and concepts, Lessons Learned

* Prone to Epistemic error and mistakes

— 90% of the reports I’ve ever tried to directly use are missing at least
one key piece of information that is required for my application.

— Human memory can be faulty
» Divergence Risk — What constitutes similarity? How do you
characterize or quantify differences?

— We do this all the time (Engineering Judgment)
— Example COV from similar systems
— Mathematical or other structured approaches?

Do we need new empirical knowledge?

"N
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Tooling Effect on Part Quality Producibility Heuristic Data (Excerpt)

Data from Knowledge —

HSP Defects

Example

Issue Semi-Rigid Cocure Tooling Cobond with Wet Hats
Flange. thlckne§s_ 'S & minor P . Flange edge thickness more variable.
assuming semi-rigid section extends into Flanaes tvpically 15% thin due to toolin
Thick/Thin |bay between stiffeners. (<10% flange resgure y(pFiberyvqume chanae in flan ges
Flanges thickness error). Assume flange and skin P : 9 9

under flange experience the same fiber
volume change.

and skins under the flanges. Resin flowed
out toward midbay and noodle area.)

Skin Waviness

Typically not a significant issue. A slight

Beyond the [(<5%) thickness increase may be noted Not an issue with precured skins
Hat beyond stiffener flange.
Shim Induced Tooling is rigid enough to be pinned in
L place and prevent undercut by the shim.
delamination : ) . .
Some slight flange fiber movement over the [No shim required.
at hat o . :
o shim is possible but can be trimmed back to
termination .
the required shape
Rl Low fiber volume is common in net formed [Low fiber volume is common in net formed
volume at . .
hats for ply pull back. Tooling approach hats for ply pull back. Tooling approach
flange A : e .
.S does not significantly affect this. does not significantly affect this.
termination
Tooling flexibility will allow a roll-off or
E_nd of h?‘ Limited intensifier droop near the end of the TS LTS termmgtlon. Expect L=
thick or thin anel (5%) flanges to taper to 15% thin at tooling
flanges P termination. If the hats are not net shape,

this in not much of an issue.

Skin Waviness
beyond the hat

The hat mandrel can create markoff beyond
the end of the hat. Since this is typically a
mating surface, shims are used to reduce
this effect. Expect a 10% thickness
decrease with shims.

Not an issue with precured skins

Tool mark-off

Tool mark off can be reduced by
terminating the inner stiffening member
before the flexible coatings.

Not an issue with precured skins

@ﬂﬂf]ﬂa
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<827 Dot from Knowledge, Analysis, and Test
Data obtained by Analysis

* Relatively fast and inexpensive
« Easiest data type for dealing with most aleatory variations

 All analysis methods require input data obtained from test
— True material scatter must be obtained from tests
— Influence on failure load can be assessed by analysis
* Prone to Epistemic uncertainty
— Is something missing in the Physics or Idealization?
— More difficult as complexity of shape or loading increases
— Surface Finish Example, Fillet Example

« Examples — Laminate Analysis, HSP pull-off.
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%8 Data from Knowledge, Analysis, and Test
Data Obtained from Small Tests

e Test Data Is the current “Gold Standard”
— Accurately Assesses Physics (of what Is tested)

« More variation/error sources than generally recognized
— Prone to excessive aleatory uncertainty
— Specimen Prep and Test Setup variation not on the real aircraft
— Example Uncertainty sources (FHC) lumped with “material scatter”
— Example added test variation (OHC fixturing)

e Coupons and elements may not be representative of the actual
structure unless excised from larger panels

laYal
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DARPA/ Data from Analysis
“Material Scatter” for FHC currently includes unknown hole fit

Filled-Hole Compression (FHC) Testing
LLoose Hole - 0.005 in. Tolerance

Measured Scatter

in Test Data Tight Hole — 0.002 in. Tolerance
\ _ 32/64/4 LayUp - SIFT Prediction — Tight Hole,
High Stiffness and Critical Failure Props
:[ = — = = Test Data Average — Unknown Hole

1 SIFT Prediction — Loose Hole,
/' Low Stiffness and Critical Failure Props

Potential Scatter
Incl. Hole diameter
tolerance

I SIFT-Simulated Limits — Loose Hole
Test Data — Unknown Hole Clearance

SIFT-Simulated Limits — Tight hole -
Approved for Public Release, Distribution Unlimited A:Iyl
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Data from Analysis

The Test Fixture and Method can significantly influence the results

Open-Hole Compression OHC Testing

25/50/25

: 28/48/24
) ety = rallis Test Fixture 2

- ”””L" rlll" o - rlll" B A A A A A Y S A
- 11171141311112114 o - ‘

| SIFT-Simulated Limits

~Nr

Data
@—ﬂ”‘:"va Approved for Public Release, Distribution Unlimited A:Im




L&Y Dota from Knowledge, Analysis, and Test
Data Obtained from Large Tests

o Large-Scale Testing
— Captures Scale-up effects (Manufacturing, Size)

— Difficult to Quantify Aleatory Uncertainty
» Few Replicates, Selected Environment/s, Single Critical Failure Mode
* Relies on building blocks
« Can often assess lower bound due to large number of repeating elements
— Very Convincing (Looks “Real’), but still prone to “idealization errors”
« Boundary Conditions, Loading, etc.

— Concorde Durability Test Anecdote

e Great for validation...

— Correct critical failure mode and location? Correct load distribution?
Appropriate total correction for scatter? Nothing missed in physics?

o Dbut expensive and insufficient if used alone

laYal
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Data from Knowledge, Analysis, and Test
Combined Data

« Each data source (K,A,T) has its own unigue characteristics
and potential errors.

* We usually have data from all 3 sources.
— How can we combine the data for maximum benefit/confidence?

o Corollary — Given our current K, what is the most effective
combination of A and T to gain sufficient confidence in a
material/design while minimizing time and $$?

— Hierarchical Bayesian Approach?

— Percentile Regression and Correlation to Analysis?
— Allowables with Uncertainty?

— Other?

~N=7
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MRPA Data from Knowledge, Analysis, and Test
Combined Data

First Data Combination Problem
o Composite Coupon Open-Hole Tension Test Data
— Comparatively Simple
— Several relatively-accurate analytical approaches
o Computational methods

— The Strain Invariant Failure Theory (SIFT).
— Point Stress Method.

@EHEINE Approved for Public Release, Distribution Unlimited
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,»Data from Knowledge, Analysis, and Test
Combined Data

e How can we combine the data for maximum benefit/confidence?
— Hierarchical Bayesian Approach

- 2
6 ~N(us,05)

n; = fb(lami,ﬂ) i = fb(lami’ﬂl5)
of ~Gamma(32) |
ﬂi“N(Ui’O'g) /ﬂizN(Ui’KUt?)
a, ~ N(u,, oo D=0 = T (X ,01,05,23,4)
|

o5 ~Gamma(31) >——y; ~ N(6;,0%)

Hyperpriors are then defined for the unknown parameters in the priors

[laYa)
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Iy Data from Knowledge, Analysis, and Test
~  Combined Data — Bayesian Approach

Advantages and Disadvantages of using Bayes Methodology

Fra's and While the primary motivation to use Bayestan reliability methods 15 typically a desire to
con's far save on test tune and matenals cost, there are other factors that should also be talken
uTing inte account. The table below summarizes some of these "good news" and "bad news"
Beayesian considerations.

methaods

Bayesian Paradigm: Advaniages and Disadvantages

Pro's Con's

* TTses prior information - this * Prior information may not be
“tnalces sense” accurate - generating rmisleading

* Ifthe prior mformation iz conclusions
encouraging, less new testing may * Way of inputting prior nformation
be needed to confirm a desired (cheice of priot) may not be
WTEF at a given confidence cotrect

* Confidence mtervals are really * Customers may not accept validity
mtervals for the (random) MTBFE - of prior data or engineering
sometimes called "credibility udgements
interwals" * There iz no one "cotrect way" of

mnputting prior mformation and
different approaches can give
different results

* Eesults aren't objectve and don't
stand by themselves

NIST/SEMATECH e-Handbook of Statistical Methods,
http://www.itl.nist.gov/div898/handbook/, August 2003.
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, Data from Knowledge, Analysis, and Test
Combined Data

e How can we combine the data for maximum benefit/confidence?

— Allowables with Uncertainty Bands
Goal: Predict, from computer runs simulating randomness, allowables.

Result: predicted allowables (which are inherently probabilistic statements) with
uncertainty bands (not inherently probabilistic) generated by the Bayesian
hierarchical method.

Advantage: Keeps the Bayesian analysis separated from the probability analysis.
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¥ Data from Knowledge, Analysis, and Test
Comblned Data — Allowables with Uncertainty

eData contain replicates => can estimate stress allowables (quantiles with
confidence bands)

*RDCS allows simulation of physical data with sources of randomness including
batch effects (aleatory or random uncertainty) => can simulate allowables.

Combined data: allowables with uncertainty bands

P Bayesian
/ uncertainty band on
|/ allowable
Allowable estimate = quantile with /
confidence band. This is the Aleatory and
“aleatory” content Bayesian are kept
separate

AN
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e

=> Data from Knowledge, Analysis, and Test
Combined Data

 How can we combine the data for maximum benefit/confidence?
— Percentile Regression and Correlation to Analysis

« Model prediction calibration in the stochastic domain with
pooled test data using weighting factors
— More accurate calibration of scatter, lower 10™ percentile etc.

e As asecond step demonstrate calibrated model prediction
capability for a different condition not used to calibrate the
model

o Use of results from models of two different fidelity
— Extensive use of Approximate Point Stress Model

— SIFT model
» Plan to enhance the current LL and UL prediction to Probabilistic
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Data from Knowledge, Analysis, and Test
Combined Data

e Studied available approached for combining experimental and modeling

data:
Bayes models

Factor models

- Parametric (normal / log-normal distribution) regression
- Non-parametric: percentile and CVaR regression

e Effort was concentrated on Factor CVaR regression models as the most
promising approach

e Made calculations for the dataset of experimental and modeling data
(open hole coupon data) using CVaR regression
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Data from Knowledge, Analysis, and Test
Combined Data

e Preliminary calculation results showed that CVaR regression approach provides
reasonable results. Three situations were considered:

- predictions of percentiles using SIFT outputs (see the next slide)
- predictions of percentiles by pooling experimental data
- predictions of percentiles by combining model and experimental data

CVaR
Regressmn

e Formal approach has been identified for calculation of B-basis in the framework
of CVaR regression. However, it has not jet been implemented.

@_ﬂﬂf]ﬂﬂ@’
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BREED Data from Knowledge, Analysis, and Test
Combined Data

- CVaR REGRESSION: SIFT MODEL PREDICTIONS / DATA

160 160
140 . 140 - :
120 & 120+ i
8 100 - USRI BT :
- | t CT s 3 | ¢i + Failure Loads
E > n..-s";; § i" é ” sqe ..."3‘” ' » Percentiles
oo e LR TR el
40 ¢ - 40"+
20 - 20 -
0 ‘ ‘ ‘ ‘ ‘ ‘ 0
0 5 10 15 20 25 30 0 10 20 30 40
Stacking Sequence Stacking Sequence
Model Only Model + One Test Data Point
Voo, =8.12+1.063 (1' — 1) +0.334 (0" —=0),  yi =3.9+0.12 (4 — u)-0.69 (o' — ) +0.92 (K — 1) ,
p =68.7, 0=4.39 u =7363, o=441, M =69.01
CVaR, =11.96 CVaR® =7.89
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